Trabajo Final de Carrera

Ingeniería Electrónica con Orientación en Sistemas Digitales

Alumno: Facundo Martín Kolos Suarez

Facultad de Ciencias Físico Químico Matemáticas y Naturales Departamento de Electrónica

Director de Trabajo Final: Ing. Alejandro Silnik

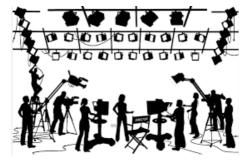
Agenda

- Introducción
- 2 Necesidad
- Marco Teórico
- 4 Diseño
- **5** Desarrollo de Software
- 6 Desafíos Abordados
- Conclusiones

Introducción

Canal Web UNSL-TV

UNSL-TV es la plataforma de contenidos audiovisuales de la Universidad Nacional de San Luis. Se producen series y ciclos de calidad narrativa y estética.


 Ubicación: Chacabuco y Pedernera, 1er Piso Ala Sur, San Luis, Argentina

Problemática

 La implementacion de un Sistema de Intercom en estas instalaciones resulta una necesidad imperante para mejorar el desarrollo de la producción audiovisual.

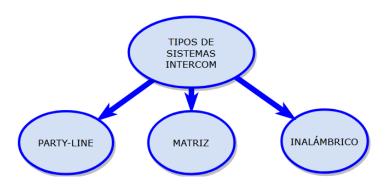
- Permite una mejora significativa en la comunicación e interacción entre los camarógrafos y el Director de Cámara.
- Gracias a dicho equipo puede ser posible cubrir una variedad de eventos, desde programas con niveles de sonido bajos, hasta espectáculos con altos niveles de ruido.

Objetivos

 Diseñar y construir un sistema de intercomunicación VoIP inalámbrico eficaz para un estudio de TV.

- Configurar una Estación Central fija para el control de comunicaciones.
- Implementar cuatro Estaciones Móviles que puedan utilizar los operarios del sistema.
- Integrar un servidor SIP para gestionar las llamadas entre las Estaciones Móviles y la Estación Central.
- Evaluar el sistema a través de pruebas prácticas.

Sistema de Intercom


Ingeniería Electrónica

- Diseño de componentes de audio y comunicación.
- Integración de hardware y software.
- Evaluación de calidad de voz y latencia.

Temáticas Clave

- Transmisión de señales de audio.
- Redes de comunicación y protocolos.
- Sincronización y calidad de audio.
- Flexibilidad y escalabilidad.
- Compatibilidad de equipos.
- Resiliencia y redundancia.

Sistemas de Intercom

Sistemas Party-Line

- Presencia de un medio cableado que interconecta a cada participante.
- Todos los involucrados pueden escuchar lo que todos hablan.
- También conocidos como Two-Wire.

Desventajas de los Sistemas Party-Line

- Limitación en la Escalabilidad: Agregar más usuarios o equipos puede ser complicado y costoso.
- Interferencias Electromagnéticas en Entornos de Estudio:
 Susceptibilidad a interferencias electromagnéticas, lo que podría resultar en ruido no deseado en las comunicaciones.
- Confusión durante transmisiones complejas: Si el sistema se expande, se dificulta reconocer la persona que se encuentra hablando.
- Sistema Inflexible frente a cambios de configuración.

Sistemas de Interconexión de Matriz

- Los sistemas Matrix permiten conexiones privadas entre usuarios.
- Forman una matriz donde las filas y columnas son usuarios.
- Conexiones individuales entre usuarios.

ADAM-301 ADAM Intercom System Matrix Frame Layout

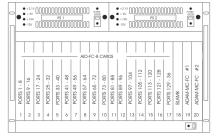


Figura: Sistema de intercom de Matriz.

Desventajas de los Sistemas de Intercom Tipo Matriz

- Complejidad: Los sistemas de matriz pueden ser técnicamente complicados de configurar y mantener debido a la cantidad de componentes y opciones disponibles.
- Costos: Estos sistemas tienden a ser más costosos tanto en comparación con los sistemas de tipo party-line.
- Requiere personal capacitado.
- Infraestructura: La implementación de un sistema de matriz puede requerir una infraestructura de cableado más compleja, lo que puede aumentar los costos y la complejidad de instalación.

Sistemas Inalámbricos

- Sistemas que pueden diseñarse para trabajar en la modalidad Party-Line o Matriz.
- Generalmente su uso se destina en aquellos escenarios donde se presta mayor importancia al hecho de no utilizar cables.

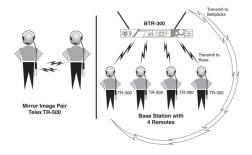


Figura: Sistema de Intercom del Tipo Inalámbrico.

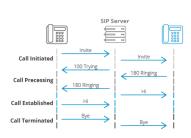
Planteo de Solución

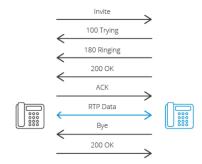
LA UTILIZACIÓN DE UN SISTEMA DE INTERCOM BASADO EN LAS REDES IP

Redes IP: Principios Básicos

- Internet es una red de computadoras que interconecta cientos de millones de dispositivos informaticos
- Al principio dichos dispositivos eran computadoras personales, luego se incorporaron equipos como televisores, telefonos móviles, cámaras web, etc.
- Se interconectan mediante una red, utilizando diversas infraestructuras y medios físicos para facilitar la transmisión de información.
- Medios Físicos: Cable coaxial, hilo de cobre, fibra óptica, WiFi, radioenlaces, etc.

Tecnología VoIP y Aplicaciones


 El termino VoIP (Voice over Internet Protocol) se encuentra asociado a las tecnologías que posibilitan al usuario realizar llamadas telefonicas utilizando redes IP.


Ventajas	Desventajas
Bajo Costo	Imposibilidad de realizar llamadas en cortes de energía
Flexibilidad	Dificultad para llamadas a servicios de emergencia
Provee servicio de email y redirección de llamadas	Dependencia del servicio de internet
Posibilidad de realizar llamadas internacionales y larga distancia	IP no garantiza la calidad de servicio
Facil implementación	
Poca utilización de la red	
Posibilidad de integración con otros servicios de la red	

- Para inicializar, mantener y finalizar las llamadas se utilizan protocolos que gestionan los recursos que se utilizan y facilitan la transferencia de informacion necesaria.
- SIP es un protocolo para el inicio de sesiones multimedia que involucren video, voz, mensajes instantáneos, entre otros.

SIP(Session Initiation Protocol)

- Es un protocolo de señalización utilizado para establecer una sesión entre 2 o más participantes y eventualmente terminar dicha sesión.
- El hecho de que SIP sea un estándar abierto, ha despertado un enorme interés en el mercado de las Centralitas Telefónicas IP.

Análisis del Entorno

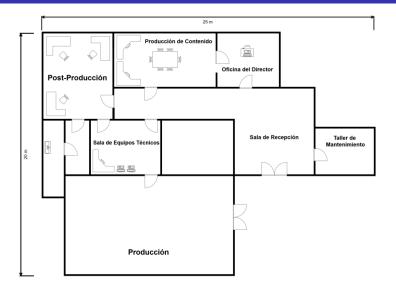
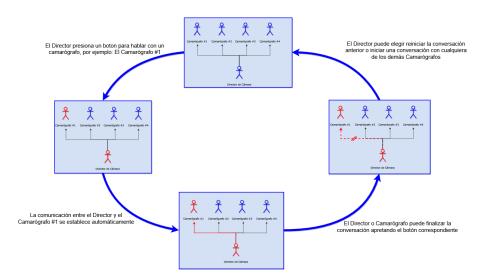
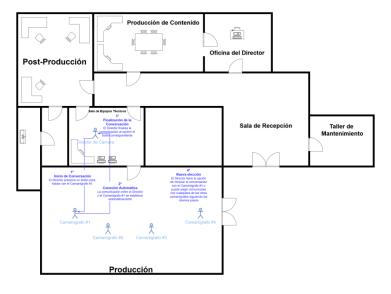
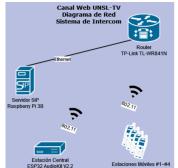
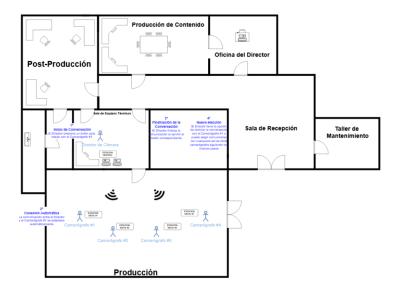




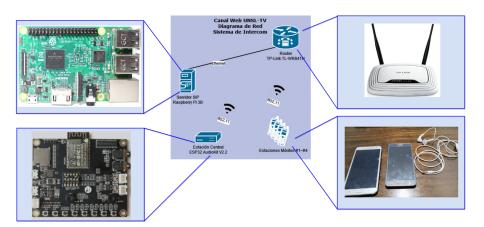
Figura: Croquis del Canal Web UNSL-TV.

Proceso de Comunicación


Proceso de Comunicación


Planteamiento del Diseño

Arquitectura del Sistema


- La arquitectura consta de tres componentes clave.
- Estación Central: Utilizada por el operador para gestionar las comunicaciones.
- Estaciones Móviles: Dispositivos utilizados en las inmediaciones para comunicarse con la Estación Central.
- Servidor SIP: Gestiona sesiones de comunicación y enrutamiento de llamadas.

Arquitectura del Sistema

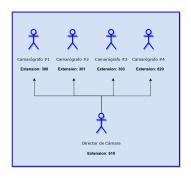
Arquitectura del Sistema

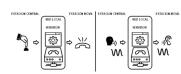
Planteamiento del Diseño

- El sistema permite la comunicacion bidireccional entre la Estación Central y las Estaciones Moviles
- Cada participante del Sistema se registra al Servidor SIP y se le asigna un numero identificatorio (numero de extensión)

Usuario	Extensión
Estacion Central	610
Estación 1	300
Estación 2	303
Estación 3	304
Estación 4	620

Planteamiento del Diseño


Proceso de Comunicación


Registro y Asignación de Extensiones

 La Estación Central se identifica como extensión 610, mientras que las Estaciones Móviles tienen extensiones como 300, 303, 304 y 620.

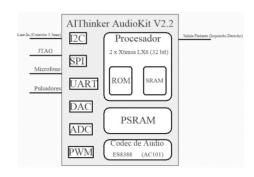
Inicio de la Comunicación

- La comunicación se inicia desde la Estación Central utilizando pulsadores dedicados.
- Los pulsadores en la Estación Central representan extensiones y facilitan la conexión con usuarios específicos.

Planteamiento del Diseño

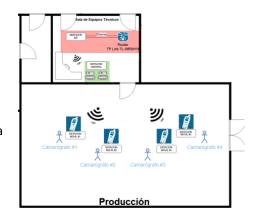
Proceso de Comunicación

- El Servidor SIP se encarga de enrutar las llamadas a las extensiones correspondientes.
- Se establecen sesiones de comunicación en tiempo real entre las Estaciones Móviles y la Estación Central.


Placa de Desarrollo: AlThinker AudioKit V2.2

- CPU de 32 bits y doble núcleo.
- Frecuencia principal hasta 240MHz.
- Memoria 520 KB SRAM, 8MB PSRAM.
- Altavoces de canal izquierdo y derecho: salida de altavoz de 4Ω 3W de salida doble canal.
- Dos microfonos analógicos, soporte para auriculares.

Placa de Desarrollo: AlThinker AudioKit V2.2


- Proporciona una plataforma integral que incorpora los componentes esenciales para el procesamiento de audio:
 - Convertidores
 Analógico/Digital
 - Convertidores
 Digital/Analógico
 - Interfaces a periféricos: Micrófonos, Parlantes
 - Etapas de amplificación y filtrado.
- Reducción de errores de implementación del sistema.

 Dichas características la convierten en la placa de desarrollo empleada para implementar la Estación Central.

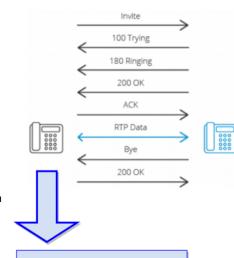
Estaciones Móviles

- Las estaciones moviles son las unidades que se utilizan en las inmediaciones para permitir la comunicación con la Estación Central.
- Pueden ser dispositivos móviles como teléfonos celulares.
- Cada Estacion Móvil se conecta al servidor SIP a través de una conexión de red.
- Solamente pueden recibir llamadas desde la Estación Central.

Servidor SIP

- Se implementa un servidor SIP para la integración de los dispositivos butilizados en el estudio de TV.
- Una alternativa que se ajusta a las necesidades del proyecto es la instalacion del software "Asterisk for Raspberry Pi".

- Este es un proyecto open source para brindar servicio a pequeñas y medianas organizaciones.
- Instala las siguientes herramientas:
 - o RasPBX: Sistema Operativo.
 - Asterisk: Software para implementar aplicaciones VoIP.
 - FreePBX: Interfaz gráfica para la gestion del servidor.

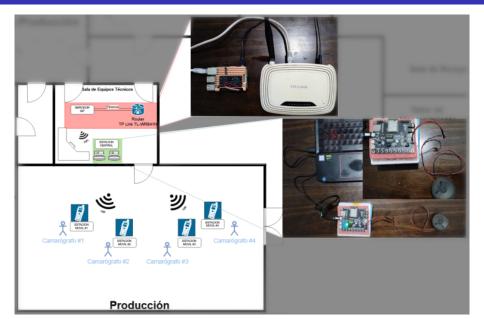

roducción

ecesidad

Marco Teórico

Servidor SIP

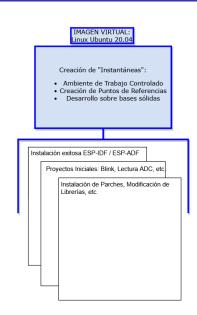

- Utilizando la interfaz grafica FreePBX es posible crear las extensiones telefónicas:
 - Numero de extensión.
 - Nombre asociado.
 - Contraseña de acceso asociado.
- Brindar configuraciones básicas:
 - Garantizar que solamente los usuarios registrados participen de la conversación.
 - Especificar los códecs de audio que pueden utilizarse (Ley μ, Ley A).



- Número de Extensión, Ejemplo: 300
- · Nombre Asociado, Ejemplo: SAM
- · Contraseña Acceso, Ejemplo: "123"

Servidor SIP

Proceso de Comunicación



Implementación del Software

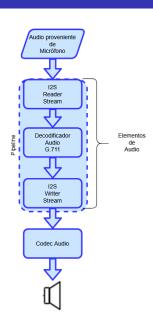
- Entorno de Desarrollo " ESP-IDF (IoT Development Framework)" / Instalación complementaria "ESP-ADF" (Audio Development Framework).
- Complejidades que conlleva:
 - Aprendizaje del entorno: Creación, Compilación y Ensayos del software programado.
- Implicancias:
 - Instalación de herramientas adicionales como: Oracle VM VirtualBox.
 - Instalación de máquina virtual Linux Ubuntu 20 04

Entorno de Desarrollo ESP-ADF

- Creada bajo la plataforma de desarrollo ESP-IDF.
 Para el desarrollo de aplicaciones de software de audio.
- Su propósito es proveer bloques estándar funcionales a bajo nivel.

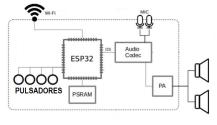
Entorno de Desarrollo ESP-ADF

Metodología de Trabajo


Pipelines de Audio Manejadores de Eventos

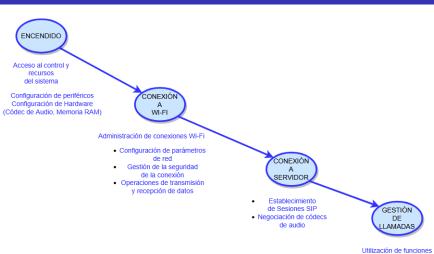
Elementos de Audio en ESP-ADF

- La unidad básica para el desarrollo de aplicaciones en ESP-ADF es el objeto elemento de audio.
- Funcionalidad general de un elemento: toma datos de entrada, los procesa y los envía a la siguiente etapa.
- Por ejemplo: Cada decodificador, codificador, filtro, flujo de entrada o flujo de salida es considerado un elemento de Audio.


Pipeline de Audio en ESP-ADF

- Los pipelines son combinaciones dinámicas de elementos de audio que simplifican el desarrollo de aplicaciones.
- Facilitan una gestión eficiente de operaciones como adquisición, procesamiento y reproducción de audio.

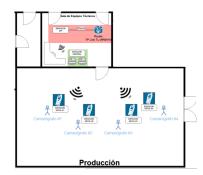
Desarrollo de Software


- Tras la creación del proyecto, se establecen los componentes que se emplean en esta aplicación.
- Elementos de entrada:
 - Conexión a señal analógica proveniente del micrófono.
 - Interfaz Wi-Fi.
 - Interfaz I2S.
 - Pulsadores para la interacción con el usuario.
- Elementos de salida:
 - Conexión hacia un parlante.
 - Interfaz Wi-Fi.
 - Interfaz I2S.
 - Luces indicativas de funcionamiento.

	Tecla K1	Tecla K2	Tecla K3	Tecla K4	Tecla K5	Tecla K6
Nombre Ref. ⁶	REC	MODE	SET	PLAY	VOL-UP	VOL-DOWN
Función	MUTE E.M	STOP CALL	CALL 300	CALL 303	CALL 304	CALL 620

Desarrollo de Software

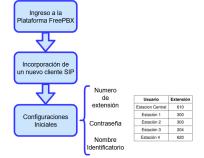
Arquitectura del Software de la Estación Central



Utilización de funciones y estructuras de datos para la manipulación de audio y gestión de los eventos relacionados a éste

Desarrollo de Software

Estaciones Móviles


- Para la implementación de las Estaciónes Móviles se pueden emplear dispositivos móviles.
- Se procede a instalar la aplicación Mizu Droid
 - Calidad de audio.
 - Protocolo de Transporte.
 - Códec empleado (Ley μ , Ley A).
 - Configuraciones de desvío.

Desarrollo de Software

Servidor SIP

- Instalación del Sistema
 Operativo " RasPBX" junto con
 sus herramientas incorporadas:
 "Asterisk", "FreePBX".
- Proceso de Gestión y Creación de Extensiones Telefónicas:

- Configuraciones particulares:
 - Establecer que la Estación Central sea el único dispositivo que realize llamadas.
- Configuraciones de conectividad IP:
 - Dirección IP Pública.
 - Dirección IP Privada. Red Local.

Desafíos Abordados Adaptación Hardware/Software

- El entorno de Desarrollo
 ESP-ADF se encuentra
 desarrollado para trabajar con
 placas de Desarrollo de audio de
 Espressif.
- La placa de desarrollo AIThinker AudioKit no forma parte de la lista de placas diseñadas por la empresa.
- No existe una perfecta compatibilidad entre el Entorno de Desarrollo y la placa.

 Para su resolución se integró software adicional para incorporar al códec de audio y adaptar correctamente la configuración del circuito.

Desafíos Abordados

Optimización de Memoria

 Durante las pruebas y ensayos se experimentan inconvenientes relacionados a la calidad del sonido. También con accesos no autorizados en la memoria de la placa.

- Medidas para mitigar estos problemas:
 - Inclusión de memorias dedicadas a tareas específicas.
 - Incrementando asignación de memoria para determinadas tareas.
 - Filtro de re-muestreo.
 - Gestión de Eventos en los Periféricos.

Desafíos Abordados

Optimización de Velocidad de Procesamiento

 Muchos problemas de sonido también se asocian al desempeño que tiene el procesador para ejecutar sus tareas.

- Para la optimización de su rendimiento se aplicaron las siguientes configuraciones:
 - Incremento de la frecuencia de procesamiento a 240 Mhz.
 - Incorporación de memoria RAM externa.
 - Incrementando la frecuencia de trabajo de la memoria RAM externa.
 - Configurando la asignación de memoria empleada para la conectividad Wi-Fi.

Evaluación de Calidad de Voz

- Se llevan a cabo ensayos con el fin de evaluar la eficacia del sistema de intercomunicación en condiciones operativas.
- Dichas evaluaciones siguen la metodología del MOS
 - Nivel de claridad percibido
 - Retardo entre emision y recepción.
 - Eco experimentado.
 - Presencia de ruidos no deseados en la señal recibida.
 - Interferencias.
 - Latencia.
 - Interrupciones Significativas del sistema.

- El usuario asigna un puntaje:
 - 1: Muy Mala.
 - 2: Mala.
 - 3: Regular.4: Buena.
 - 5: Muy Buena.

Llamada	Calidad	Retardo	Eco	Ruido	Interferencias	Latencia	Interrupciones
1	5,0	5,0	4,0	4,0	5,0	5,0	5,0
2	5,0	5,0	4,0	3,0	5,0	5,0	5,0
3	5,0	5,0	4,0	3,0	5,0	5,0	5,0
4	4,0	4,0	3,0	3,0	5,0	5,0	5,0
5	5,0	5,0	4,0	3,0	5,0	5,0	4,0
6	5,0	5,0	4,0	3,0	5,0	5,0	4,0
7	4,0	4,0	4,0	4,0	5,0	5,0	5,0
8	4,0	4,0	4,0	4,0	5,0	5,0	5,0
9	5,0	5,0	4,0	4,0	5,0	5,0	5,0
10	5,0	5,0	3,0	4,0	5,0	5,0	5,0
Promedio	4,7	4,7	3,8	3,5	5,0	5,0	4,8

Evaluación de Latencia

- Durante la conversación se transmiten paquetes desde la Estación Central hacia la Estación Móvil y viceversa.
- Para la evaluación de la calidad del servicio ofrecida por el Sistema de Intercom diseñado, se considera:
 - Las evaluaciones MOS durante los ensayos en el Canal Web.
 - La medición de la latencia, empleando el software Wireshark.

- A través del software Wireshark se mide el tiempo de latencia de los paquetes.
- Como referencia, se puede afirmar que mientras la latencia no supere los 150 ms, el sistema ofrece una calidad aceptable.

Evaluación de Latencia

Análisis de Mediciones

 Cada llamada abre una sesión RTP desde la cual se efectúan las mediciones de latencia.

 Se efectúan 10 llamadas para los ensayos:

Evaluación	Latencia(ms)		
Llamada 1	30.51		
Llamada 2	21.2		
Llamada 3	28.96		
Llamada 4	70.33		
Llamada 5	21.08		
Llamada 6	29.88		
Llamada 7	31.4		
Llamada 8	20.82		
Llamada 9	29.9		
Llamada 10	29.41		
Promedio	31.34		

Análisis de Resultados Obtenidos

- A partir de las evaluaciones MOS se visibilizan aspectos a mejorar para el sistema.
- El ruido experimentado puede disminuirse seleccionando la placa de desarrollo que contenga un hardware más apropiado.
- La placa Al Thinker AudioKit contiene 2 versiones conocidas.
- Una version utiliza el códec de audio *AC101*.
- La versión de la placa que utiliza el códec ES8388 contiene mayor robustez frente al ruido.

Análisis de Resultados

- Considerando el ámbito de aplicación del dispositivo, las conversaciones se limitan a no más de 30 segundos.
- Es posible afirmar que dentro de los límites definidos, la latencia no supera los 150 ms.
- En base a los resultados presentados y las evaluaciones proporcionadas por los operadores del sistema, es posible afirmar que este diseño posibilita una comunicación fluida y en tiempo real en el entorno del Canal Web UNSI-TV.

Trabajos Futuros

- Incorporar la función de muteado individual para cada Estación Móvil.
- Incorporar la posibilidad de conexión de auriculares a la placa que corresponde a la Estación Central.
- Control dinámico de volumen en la salida de audio de la Estación Central.
- Explorar como los diferentes códecs de audio disponibles pueden influir en la latencia y la calidad del sonido.
- Control Bluetooth de un sistema de luces del estudio.
- Incorporacion de notificaciones y alertas ante eventos tales como: Interrupción del sistema, cambios de señal, entre otros.
- Simplificacion de la integración de un nuevo dispositivo al sistema.

PREGUNTAS?

Agradecimientos

- A mi familia. Sobre todo a mi madre.
- A mis compañeros.
- Muchas gracias a todos mis profesores.